Generative Pre-trained Transformer (GPT) models have been making waves in the artificial intelligence world. With improved performance over existing neural network architectures and unprecedented scale, these language processing models have revolutionized natural language-based AI.

Generative Pre-Trained Transformer 3 (GPT-3) and Generative Pre-Trained Transformer 4 (GPT-4) are two of the latest tools for developing and improving artificial intelligence (AI). GPT-3 was released in May 2020 and its successor, GPT-4, is speculated to launch to the public some time in early 2023. Both GPTs will offer advanced capabilities for natural language processing, but there are some significant differences between the two.

What is GPT?

A Generative Pre-Trained Transformer (GPT) is a sophisticated neural network architecture used to train large language models (LLMs). It makes use of large amounts of publicly available Internet text to simulate human communication.

A GPT language model can be used to provide artificial intelligence solutions that handle complex communication tasks. Thanks to GPT-based LLMs, computers are able to handle operations like text summarization, machine translation, classification, and code generation. GPT also allows the creation of conversational AI, capable of answering questions and providing valuable insights on the information the models have been exposed to.

Get started on your own conversational AI chatbot

GPT is a text-only model. Focusing only on the generation of text allows artificial intelligence to navigate and analyze text more effectively without distractions. While GPT-3 is a text-only model, we still don’t know if GPT-4 continues in that direction or if it will be a multi-modal neural network.

Why is GPT so important?

GPT represents a revolution in the way AI-generated text content is created. GPT models –with learning parameters ranging in the hundreds of billions– are incredibly smart and have a considerable edge over all previous versions of language models. 

Uses of GPT

GPT can be applied to a wide range of applications such as:

  • Content creation: From 18th-century poetry to SQL queries, GPT models can be fed any kind of prompt and they will start to produce coherent and humanlike text results.
  • Text summarization: By being able to generate fluent, humanlike text, GPT-4 will be able to reinterpret any kind of text document and form an intuitive summary of it with its ability to generate fluent, humanlike text. This is useful for condensing long volumes of data for more effective insight gathering and analysis.
  • Answering questions: One of the main competencies of GPT software is its capacity to understand speech, including questions. Additionally, it can provide precise answers or detailed explanations, depending on the needs of the user. This means that the customer service and technical support functions can be considerably improved through GPT-4 powered solutions.
  • Machine translation: Language translation tasks handled by GPT-powered software are instant and accurate. By training AI on large datasets of already translated material, its accuracy and fluency can be improved. In fact, GPT can do more than translate from one language to another. GPT AI models can even take legal speech and turn it into simple natural language.
  • AI-powered safety: Because GPT AI is capable of text recognition, it can be used to identify any form of language. This capability can be used to identify and flag certain types of communication.so toxic Internet content can be more effectively identified and dealt with.
  • Conversational AI: Chatbot technology developed using GPT software can become incredibly smart. This allows the creation of machine-learning virtual assistants, capable of aiding professionals to perform their tasks regardless of industry. For instance, a conversational AI in the healthcare industry can be used to analyze patient data to suggest diagnoses and treatment options.
  • App creation: GPT-like AI models may become capable of creating apps and layout tools with minimal human feedback. As they continue to improve, it is possible that they create even more of the code involved in creating plugins and other types of software with just a description of what one wants to achieve.

What are the differences between GPT-3 and GPT-4?

GPT-4 promises a huge performance leap over GPT-3 including an improvement in the generation of text that mimics human behavior and speed patterns.

GPT-4 is able to handle language translation, text summarization, and other tasks in a more versatile and adaptable manner. Software trained through it will be able to infer users' intentions with higher accuracy, even when human error interferes with instructions.

More power on a smaller scale

GPT-4 is speculated to be only slightly bigger than GPT-3. The newer model clears the misconception that the only way to get better is by getting bigger by relying more on machine learning parameters than on size. While it will still be larger than most previous-generation neural networks, its size will not be as relevant to its performance.

Some of the latest language software solutions implement incredibly dense models, reaching over three times the size of GPT-3. However, size by itself doesn't necessarily translate into higher performance levels. On the contrary, smaller models seem to be the most efficient way to train digital intelligence. Many companies are making the switch towards smaller systems and benefitting from the change. Not only is their performance improved, but they can also reduce their computing costs, carbon footprint, and entry barriers.

A revolution in optimization

One of the largest drawbacks of language models has been the resources that go into their training. Companies often decide to trade accuracy for a lower price tag, leading to notably underoptimized AI models. Oftentimes, artificial intelligence is only taught once, which prevents it from acquiring the best set of hyperparameters for learning rate, batch size, and sequence length, among other features.

For a very long time, it was thought that model performance was mainly affected by the model size. This has led many large companies including Google, Microsoft, and Facebook to spend large amounts of capital building the biggest systems. However, this method didn't take into account the amount of data the models were being fed.

More recently, hyperparameter tuning has been shown to be one of the most significant drivers of performance improvement. However, this isn't attainable for larger models. New parameterization models can be trained for a fraction of the cost on a smaller scale to then transfer the hyperparameters to a larger system for virtually no cost at all.

Due to this, GPT-4 doesn't need to be much larger than GPT-3 to be more powerful. Its optimization is based around improving variables other than model size – such as higher quality data– although we won’t be able to have the entire picture until it’s released. Incredible developments in all benchmarks can be achieved by a fine-tuned GPT-4 capable of using the correct set of hyperparameters, optimal model sizes, and an accurate number of parameters.

What will it mean for language modeling?

GPT-4 is a huge leap forward in the field of natural language processing technology. It has the potential to become an invaluable tool for anyone who needs to generate text.

The focus of GPT-4 is the provision of greater functionality and more effective resource use. Instead of relying on large models, it is optimized to make the best out of smaller ones. With enough optimization, small models can keep up with and even surpass the biggest models. Moreover, the implementation of smaller models allows for the creation of more cost-effective and environmentally friendly solutions.

How does natural language understanding (NLU) work?

What does it mean for users and businesses?

While the average Internet user may not notice much change after the implementation of GPT-4, it will change the way many businesses operate. GPT-4 will be able to generate vast amounts of content at a blinding speed, allowing companies to operate various aspects of their business with the help of artificial intelligence.

Businesses that get a hold of GPT-4 gain the capacity to generate content automatically, saving time and money while increasing their outreach. Since the technology can work with any kind of text, the practical applications of GTP-4 are practically limitless.

How can it grow my business?

GPT-4's focus on functionality translates into an increase in operational efficiency. Businesses can use AI to upscale their customer support efforts, their content generation strategies, and even to improve sales and marketing activities.

GPT-4 empowers businesses to:

  • Create large volumes of content: Next-generation, advanced language models enable businesses to create high-quality content at a very quick pace. For example, a company can rely on artificial intelligence to generate social media content on a consistent basis. This helps a business keep a good online presence without having to put much thought into it.
  • Enhance customer support capabilities: AIs capable of producing humanlike responses are incredibly useful for customer support. By producing clear responses to customer queries, AI solutions can handle the vast majority of common customer support situations. This helps reduce the amount of support tickets while also providing customers with a more direct method of getting answers.
  • Personalize the marketing experience: Thanks to GPT-4, it will be easier to create advertisement content that caters to varied demographics. AI can generate targeted content and ads that are more relevant to the people who will consume them. This strategy can help increase conversion rates among online users.

What impact will it have on software creation?

GPT-4 is expected to continue its impact on the software development industry. Developers can expect to receive help from AI during the creation of code for new software programs to automate the bulk of repetitive manual programming tasks.

What is the importance of GPT?

In conclusion, GPT-3 and GPT-4 represent crucial advancements in the field of language models. GPT-3’s adoption throughout a variety of applications has been proof of the intense interest in the technology and continued potential for its future. Although not yet released, GPT-4 is expected to benefit from considerable advancements that will make these powerful language models even more versatile. It will be fascinating to see how these models develop going forward since they have the power to fundamentally alter how we communicate with robots and interpret natural language.

Discover the impact a chatbot can have on your business

Related Articles

Culture
March 10, 2022

What does an internal Botpress hackathon look like?

A look inside the 2nd annual Botpress Hackathon

Culture
May 24, 2022

The People of Botpress: Jean-Bernard Perron, Chief Financial Officer

The People of Botpress is a series where we highlight our people and the great work they do by talking about life at Botpress. In this edition of The People of Botpress, we interview our Chief Financial Officer, Jean-Bernard Perron

Industry
April 8, 2022

Chatbots for manufacturing industry | Benefits & Use Cases

In the manufacturing industry, chatbots have a dual role. In this article we discuss their use cases in this sector as well as key benefits.

Join 30,000+ chatbot builders reading our content,
Subscribe Now!

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.