
Los agentes de IA se han disparado en los últimos años. Y con su compleja tecnología y capacidades, hoy en día hay muchos tipos diferentes de agentes de IA.
Un agente de IA es un software que realiza tareas. A diferencia de un chatbot estándar, puede realizar acciones en nombre de un usuario.
There's a wide range of AI agents, from smart thermometers and self-driving cars, to agents with chat interfaces. All of these use cases fall into one of the seven main categories of AI agents. In this article, I'll share the 7 main types of AI agent and some real-world examples of AI agents.
1. Agentes reflejos simples
A simple reflex agent is an AI system that makes decisions based only on the current input from its environment.
It uses a set of condition-action rules to map observed inputs to specific responses. When it detects a certain state in the environment, it executes the corresponding rule.
It has no memory or internal model of the world — so it can only operate effectively in fully observable environments where every decision can be made based on the current input alone.
Examples of Simple Reflex Agents
- A thermostat that turns on the heat if it’s too cold
- A robot that turns when it hits a wall (hello, Roomba with a cat on top)
- A basic chatbot that replies “Hello!” when a user says “Hi”
.webp)
2. Agentes reflejos basados en modelos
A model-based reflex agent is an AI agent that makes decisions based on both the current input and an internal model of the world.
Unlike simple reflex agents, this type keeps track of the environment’s state over time. It uses a model — essentially, stored information about how the world works — to fill in gaps when the environment isn’t fully observable.
When it receives a new input, it updates its internal state, consults its condition-action rules, and chooses the best response based on both the current percept and what it knows from previous interactions.
Examples of Model-Based Reflex Agents
- A robot vacuum that remembers the layout of a room and avoids areas it has already cleaned
- An LLM agent that continues a conversation while keeping track of past user inputs
- A game AI that reacts not only to what it sees but also to what it knows from earlier in the match

3. Agentes de aprendizaje
A learning agent is an AI agent that improves its performance over time by learning from its experiences.
It has four main components: a learning element, a performance element, a critic, and a problem generator.
The performance element chooses actions, while the learning element adjusts its behavior based on feedback. The critic evaluates the outcome of actions using a predefined standard, and the problem generator suggests new actions to try for better learning.
This structure allows the agent to adapt to changes, refine strategies, and operate effectively even in unfamiliar environments.
Examples of Learning Agents
- A crypto AI agent that adjusts trading strategies based on market performance
- A recommendation engine that gets better at suggesting products based on user behavior
- A healthcare chatbot that learns from patient interactions to improve triage accuracy

4. Agentes basados en la utilidad
A utility-based agent is an AI agent that chooses actions based on which outcome is expected to provide the highest overall value or “utility.”
Rather than just aiming to achieve a goal, this agent evaluates different possible outcomes and selects the one that maximizes a predefined utility function.
This allows it to handle situations where there are multiple ways to reach a goal, or where trade-offs must be made. It requires the ability to compare options, predict consequences, and rank outcomes based on preferences or priorities.
Examples of Utility-Based Agents
- A chatbot for sales that prioritizes leads based on likelihood to convert
- A stock trading bot that balances risk and return to maximize long-term gains
- A business chatbot that schedules meetings to minimize conflicts and maximize convenience
5. Agentes jerárquicos
A hierarchical agent is an AI agent that organizes its decision-making process into multiple layers or levels, with higher levels handling abstract goals and lower levels managing specific actions.
This agent breaks complex tasks into smaller sub-tasks, with each level of the hierarchy responsible for a different scope of decision-making.
High-level layers may plan long-term strategies, while lower layers handle immediate sensor data and real-time responses. Communication flows between layers, allowing the agent to coordinate broad objectives with detailed execution.
This structure makes it easier to manage complexity and scale behavior across different time frames or priorities.
Examples of Hierarchical Agents
- In manufacturing, a high-level agent plans the assembly process while lower levels control robotic arms and timing
- In a smart factory, different layers manage production schedules, machine coordination, and physical operations

6. Goal-Based Agents
A goal-based agent is an AI agent that makes decisions by evaluating which actions will help it achieve a specific goal.
The agent is given one or more goals — desired outcomes it wants to reach. It uses search or planning algorithms to explore possible sequences of actions, then selects the ones that are most likely to lead to the goal.
Unlike reflex agents, it doesn't just react — it reasons about future consequences before acting. This makes it more flexible and capable in dynamic or unfamiliar environments, but also more computationally demanding.
Examples of Goal-Based Agents
- A navigation system that calculates the best route to a destination
- A puzzle-solving AI that searches for moves that will lead to a completed puzzle
- A robotic arm that plans a sequence of motions to successfully assemble a product
7. Multi-Agent Systems (MAS)
Last but not least: the multi-agent system.
A multi-agent system (MAS) is a system composed of multiple interacting AI agents that work together (or sometimes compete) to accomplish individual or shared objectives.
Each agent in the system operates independently, with its own capabilities, goals, and perception of the environment.
These agents communicate and coordinate — either directly through messages or indirectly by observing changes in the environment. The system as a whole can solve problems that are too complex or distributed for a single agent to handle.
Multi-agent systems can be cooperative, competitive, or a mix of both, depending on the design and goals.
Examples of Multi-Agent Systems
- Autonomous vehicles coordinating at an intersection to avoid collisions
- A set of finance bots manages invoicing, fraud detection, and reporting through AI workflow automation
- A supply chain system where different agents manage inventory, shipping, and demand forecasting

Crea agentes de IA personalizados
It's not difficult to build a customized AI agent - and you can do it for free.
Botpress ofrece un constructor de flujo visual de arrastrar y soltar, seguridad de nivel empresarial, una amplia biblioteca educativa y una comunidadDiscord activa de más de 20.000 creadores de bots.
Nuestra plataforma extensible le permite crear cualquier chatbot personalizado con cualquier integración personalizada, y nuestro Hub integración está repleto de conectores prediseñados con los canales más importantes.
Empieza a construir hoy mismo. Es gratis.
Preguntas frecuentes
Is ChatGPT an AI agent?
Yes, ChatGPT can be considered an AI agent — it receives input, processes it, and generates responses, often using a goal or utility-driven approach depending on how it’s deployed.
What are the 7 types of AI agent?
The 7 types are: simple reflex agents, model-based reflex agents, goal-based agents, utility-based agents, learning agents, hierarchical agents, and multi-agent systems.
¿Qué son los agentes inteligentes y cómo actúan en los entornos digitales?
Los agentes inteligentes son entidades diseñadas para actuar en diversos entornos digitales. Recogen conocimientos de su entorno, evalúan la situación actual y ejecutan acciones para alcanzar objetivos predefinidos. Su rendimiento se ve influido por las acciones externas que realizan en entornos observables.
¿Qué papel desempeña la inteligencia artificial en la funcionalidad de los agentes?
La Inteligencia Artificial permite a los agentes inteligentes aprender, razonar y adaptarse. Los agentes utilizan la IA para mejorar su base de conocimientos, lo que les permite tomar decisiones más sofisticadas en diversos entornos.
¿Qué constituye la base de conocimientos de los agentes inteligentes?
El conocimiento de los agentes inteligentes abarca información sobre el entorno, reglas predefinidas y una comprensión fundamental de la situación actual. Este conocimiento constituye la base de sus procesos de toma de decisiones.
¿Qué es el elemento de rendimiento en el contexto de los agentes inteligentes?
El elemento de rendimiento de los agentes inteligentes se refiere a su capacidad para alcanzar objetivos y tomar decisiones que optimicen sus acciones en un entorno determinado. Es un componente crucial que determina la eficiencia y eficacia del agente.
¿Pueden los agentes operar en estructuras jerárquicas?
Sí, los agentes jerárquicos son un tipo de agente inteligente que opera en niveles estructurados. Los agentes de alto nivel supervisan la toma de decisiones generales, mientras que los agentes de nivel inferior se encargan de tareas específicas dentro de un marco más amplio. Esta estructura jerárquica permite un funcionamiento eficaz en entornos complejos.
¿Operan los agentes inteligentes con inteligencia limitada?
Sí, muchos agentes inteligentes operan con inteligencia limitada, lo que significa que tienen un ámbito definido de conocimientos y capacidades. Esta limitación les ayuda a centrarse en tareas y entornos específicos en los que su experiencia es más relevante.
Índice
Comparte esto en: