
AI-agenten zijn de afgelopen jaren explosief gegroeid. En met hun complexe technologie en mogelijkheden zijn er tegenwoordig veel verschillende soorten AI-agenten.
Een AI-agent is software die taken uitvoert. In tegenstelling tot een standaard chatbot kan hij acties ondernemen in naam van een gebruiker.
There's a wide range of AI agents, from smart thermometers and self-driving cars, to agents with chat interfaces. All of these use cases fall into one of the seven main categories of AI agents. In this article, I'll share the 7 main types of AI agent and some real-world examples of AI agents.
1. Eenvoudige reflexmiddelen
A simple reflex agent is an AI system that makes decisions based only on the current input from its environment.
It uses a set of condition-action rules to map observed inputs to specific responses. When it detects a certain state in the environment, it executes the corresponding rule.
It has no memory or internal model of the world — so it can only operate effectively in fully observable environments where every decision can be made based on the current input alone.
Examples of Simple Reflex Agents
- A thermostat that turns on the heat if it’s too cold
- A robot that turns when it hits a wall (hello, Roomba with a cat on top)
- A basic chatbot that replies “Hello!” when a user says “Hi”
.webp)
2. Modelgebaseerde reflexagenten
A model-based reflex agent is an AI agent that makes decisions based on both the current input and an internal model of the world.
Unlike simple reflex agents, this type keeps track of the environment’s state over time. It uses a model — essentially, stored information about how the world works — to fill in gaps when the environment isn’t fully observable.
When it receives a new input, it updates its internal state, consults its condition-action rules, and chooses the best response based on both the current percept and what it knows from previous interactions.
Examples of Model-Based Reflex Agents
- A robot vacuum that remembers the layout of a room and avoids areas it has already cleaned
- An LLM agent that continues a conversation while keeping track of past user inputs
- A game AI that reacts not only to what it sees but also to what it knows from earlier in the match

3. Lerende agenten
A learning agent is an AI agent that improves its performance over time by learning from its experiences.
It has four main components: a learning element, a performance element, a critic, and a problem generator.
The performance element chooses actions, while the learning element adjusts its behavior based on feedback. The critic evaluates the outcome of actions using a predefined standard, and the problem generator suggests new actions to try for better learning.
This structure allows the agent to adapt to changes, refine strategies, and operate effectively even in unfamiliar environments.
Examples of Learning Agents
- A crypto AI agent that adjusts trading strategies based on market performance
- A recommendation engine that gets better at suggesting products based on user behavior
- A healthcare chatbot that learns from patient interactions to improve triage accuracy

4. Op nut gebaseerde agenten
A utility-based agent is an AI agent that chooses actions based on which outcome is expected to provide the highest overall value or “utility.”
Rather than just aiming to achieve a goal, this agent evaluates different possible outcomes and selects the one that maximizes a predefined utility function.
This allows it to handle situations where there are multiple ways to reach a goal, or where trade-offs must be made. It requires the ability to compare options, predict consequences, and rank outcomes based on preferences or priorities.
Examples of Utility-Based Agents
- A chatbot for sales that prioritizes leads based on likelihood to convert
- A stock trading bot that balances risk and return to maximize long-term gains
- A business chatbot that schedules meetings to minimize conflicts and maximize convenience
5. Hiërarchische agenten
A hierarchical agent is an AI agent that organizes its decision-making process into multiple layers or levels, with higher levels handling abstract goals and lower levels managing specific actions.
This agent breaks complex tasks into smaller sub-tasks, with each level of the hierarchy responsible for a different scope of decision-making.
High-level layers may plan long-term strategies, while lower layers handle immediate sensor data and real-time responses. Communication flows between layers, allowing the agent to coordinate broad objectives with detailed execution.
This structure makes it easier to manage complexity and scale behavior across different time frames or priorities.
Examples of Hierarchical Agents
- In manufacturing, a high-level agent plans the assembly process while lower levels control robotic arms and timing
- In a smart factory, different layers manage production schedules, machine coordination, and physical operations

6. Goal-Based Agents
A goal-based agent is an AI agent that makes decisions by evaluating which actions will help it achieve a specific goal.
The agent is given one or more goals — desired outcomes it wants to reach. It uses search or planning algorithms to explore possible sequences of actions, then selects the ones that are most likely to lead to the goal.
Unlike reflex agents, it doesn't just react — it reasons about future consequences before acting. This makes it more flexible and capable in dynamic or unfamiliar environments, but also more computationally demanding.
Examples of Goal-Based Agents
- A navigation system that calculates the best route to a destination
- A puzzle-solving AI that searches for moves that will lead to a completed puzzle
- A robotic arm that plans a sequence of motions to successfully assemble a product
7. Multi-Agent Systems (MAS)
Last but not least: the multi-agent system.
A multi-agent system (MAS) is a system composed of multiple interacting AI agents that work together (or sometimes compete) to accomplish individual or shared objectives.
Each agent in the system operates independently, with its own capabilities, goals, and perception of the environment.
These agents communicate and coordinate — either directly through messages or indirectly by observing changes in the environment. The system as a whole can solve problems that are too complex or distributed for a single agent to handle.
Multi-agent systems can be cooperative, competitive, or a mix of both, depending on the design and goals.
Examples of Multi-Agent Systems
- Autonomous vehicles coordinating at an intersection to avoid collisions
- A set of finance bots manages invoicing, fraud detection, and reporting through AI workflow automation
- A supply chain system where different agents manage inventory, shipping, and demand forecasting

Bouw aangepaste AI-agenten
It's not difficult to build a customized AI agent - and you can do it for free.
Botpress biedt een drag-and-drop visual flow builder, enterprise-grade beveiliging, een uitgebreide educatieve bibliotheek en een actieve Discord community van 20,000+ bot builders.
Ons uitbreidbare platform betekent dat je elke aangepaste chatbot met elke aangepaste integratie kunt bouwen - en onze Integration Hub zit vol met kant-en-klare connectoren met de grootste kanalen.
Begin vandaag nog met bouwen. Het is gratis.
Veelgestelde vragen
Is ChatGPT an AI agent?
Yes, ChatGPT can be considered an AI agent — it receives input, processes it, and generates responses, often using a goal or utility-driven approach depending on how it’s deployed.
What are the 7 types of AI agent?
The 7 types are: simple reflex agents, model-based reflex agents, goal-based agents, utility-based agents, learning agents, hierarchical agents, and multi-agent systems.
Wat zijn intelligente agenten en hoe werken ze in digitale omgevingen?
Intelligente agenten zijn entiteiten die ontworpen zijn om te handelen in verschillende digitale omgevingen. Ze verzamelen kennis uit hun omgeving, beoordelen de huidige situatie en voeren acties uit om vooraf gedefinieerde doelen te bereiken. Hun prestaties worden beïnvloed door de externe acties die ze ondernemen binnen waarneembare omgevingen.
Hoe speelt kunstmatige intelligentie een rol in de functionaliteit van agenten?
Kunstmatige intelligentie stelt intelligente agenten in staat om te leren, te redeneren en zich aan te passen. Agenten gebruiken AI om hun kennisbasis te vergroten, waardoor ze verfijndere beslissingen kunnen nemen in verschillende omgevingen.
Wat is de kennisbasis van intelligente agenten?
De kennis van intelligente agenten omvat informatie over de omgeving, vooraf gedefinieerde regels en een fundamenteel begrip van de huidige situatie. Deze kennis vormt de basis voor hun besluitvormingsprocessen.
Wat is het prestatie-element in de context van intelligente agenten?
Het prestatie-element van intelligente agenten verwijst naar hun vermogen om doelen te bereiken en beslissingen te nemen die hun acties in een gegeven omgeving optimaliseren. Het is een cruciale component die de efficiëntie en effectiviteit van de agent bepaalt.
Kunnen agenten werken in hiërarchische structuren?
Ja, hiërarchische agenten zijn een type intelligente agent die in gestructureerde niveaus werken. Agenten op een hoog niveau houden toezicht op de algemene besluitvorming, terwijl agenten op een lager niveau specifieke taken uitvoeren binnen een breder kader. Deze hiërarchische structuur maakt een efficiënte werking in complexe omgevingen mogelijk.
Werken intelligente agenten met beperkte intelligentie?
Ja, veel intelligente agenten werken met beperkte intelligentie, wat betekent dat ze een beperkte omvang van kennis en mogelijkheden hebben. Deze beperking helpt ze zich te concentreren op specifieke taken en omgevingen waar hun expertise het meest relevant is.
Inhoudsopgave
Deel dit op: